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ABSTRACT 
Some recent advances in intrusion detection are based on 
detecting anomalies in program behavior, as characterized by 
the sequence of kernel calls the program makes.  Specifically, 
traces of kernel calls are collected during a training period.  The 
substrings of fixed length N (for some N) of those traces are 
called N-grams.  The set of N-grams occurring during normal 
execution has been found to discriminate effectively between 
normal behavior of a program and the behavior of the program 
under attack.  The N-gram characterization, while effective, 
requires the user to choose a suitable value for N.  This paper 
presents an alternative characterization, as a finite state machine 
whose states represent predictive sequences of different lengths.  
An algorithm is presented to construct the finite state machine 
from training data, based on traditional string-processing data 
structures but employing some novel techniques.  

Keywords 
Intrusion detection, computational immunology, finite 
automata, string processing. 

1. INTRODUCTION 
In [5, 6, 8], Stephanie Forrest has shown that the behavior of a 
program can be characterized by the sequence of calls it makes 
to the operating system kernel.  Forrest and her colleagues at 
the University of New Mexico have used this observation to 
develop a novel and effective method of intrusion detection.  
During a training period, system calls from the process running 
the program are collected and characteristic patterns of system 
calls are placed in a database.  Once the normal behavior of the 
program has been fully characterized in this way, the database 
can be used for intrusion detection.  To detect intrusions, 
system calls are again collected, but this time they are compared 
against the contents of the database.  When clusters of 
discrepancies between the run-time behavior and the database 
are found, it is likely that an attack has occurred.  This method 

 of intrusion detection has been used to detect attacks in which 
some other program takes over a process (for example, in a 
buffer overflow attack) or in which a program is being used in 
an illegitimate way.  The method is simple and effective, can be 
tuned to practically eliminate false alarms, and can detect novel 
attacks because it is based solely on a program’s normal 
behavior, not on characteristics of any particular attack.  

This approach to intrusion detection is part of a program of 
research called computational immunology, whose goal is to 
build a computer immune system, by analogy with the 
vertebrate immune system.  Intrinsic to the vertebrate immune 
system is the distinction between “self”—the individual 
organism—and other, possibly pathogens.  Analogously, the 
database that characterizes normal data is called the self 
database, because it describes the “self” of a program, or its 
normal execution behavior. 

The key to the success of this approach is the method used to 
characterize normal program behavior.  A trace is a sequence of 
observations of the program’s behavior, for example a sequence 
of calls made to the operating system kernel by the process 
executing the program.  Any non-trivial program has an infinite 
number of potential traces, which must somehow be 
characterized with a finite database.  An essential insight was 
that the database could consist of short sub-strings that may 
occur in a trace.  Specifically, consider each sub-string of length 
N (commonly called N-gram) of a trace.  The set of all distinct 
N-grams that occur in all normal traces during the training 
period is considered to empirically characterize the program’s 
normal behavior.  For sufficiently large N, that set is only a 
small subset of all possible N-grams, hence the remarkable 
effectiveness of the computational immunology approach.   

Forrest’s simple and effective method has been used to detect 
attacks on Unix privileged processes.  To make it work with a 
new operating system, one needs to instrument the operating 
system and to choose a suitable value for N.  The appropriate 
value for N depends on the granularity of the kernel calls, 
which may vary from one operating system to another. 

We have applied this method to distributed applications [10].  
In our distributed environment, it was natural to use traces of 
calls from client to server, rather than the more traditional 
kernel calls.  Using application server calls as elements of the 
traces meant that we had to find a value for N that was suitable 
for a given application.  This was a significant problem, since 
the granularity of the calls can vary widely from one application 
to another.  Further, in an operating system environment, one 
can assume that operating system experts are able to instrument 
the system and find some appropriate value for N.  In a 
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distributed application environment, the experts on server 
operations are the application developers.  We discovered that 
the task of finding a suitable N is hard to explain to application 
developers and easy to get wrong, so we resolved to find a way 
to help the developers perform it. 

The solution turned out to be not to choose a value for N, but to 
automatically find a set of strings of different lengths (multiple-
length N-grams) that describes normal execution.  This turned 
out to have several advantages, including simplifying the 
detector and possibly reducing the length of time required to 
find a characteristic set of strings.  

In the remaining sections of this article, we first briefly review 
Forrest’s method of characterizing programs and the training 
cycle needed to characterize normal program behavior.  We 
then show how to use traditional string processing techniques to 
find a set of strings of different lengths that is equivalent to the 
N-gram characterization.  Finally, by increasing N but relaxing 
the requirement for an exact match, we arrive at a new 
characterization that finds a set of strings of “appropriate” 
length, without sacrificing the ability to detect anomalies. 

2. The N-gram Characterization of Program 
Behavior 
It is important to note that the self database for a program 
consists of all N-grams that occur during training.  That is, we 
do not slice each trace into segments of length N.  Instead, we 
collect the contents of a window of width N as it slides along 
the trace—hence Forrest’s detection algorithm is called the 
sliding window algorithm.  For example, consider a trace of 
training data, where we use letter symbols to stand for kernel 
calls:2 

A B C C A B B C C A A B C 

If N = 4, the self database consists of the set of all substrings of 
length four of the training string: 

ABCC  

BCCA 

CCAB  

CABB 

ABBC 

BBCC  

CCAA 

CAAB  

AABC 

After the database has been constructed, we can check 
executions of the program against the self database.  An 
anomaly is an N-gram that occurs during execution but is not in 
the database.  For example, the string ABCCABBCCABABC 
contains the anomalies CABA, ABAB, and BABC.  A few 
anomalies may simply mean that the training traces did not 
cover all normal behavior, but a large cluster of anomalies is a 
good indicator of an attack. 

                                                                 
2 Note that this string is too short to be considered adequate for 

training for even a toy program.  It is presented here merely to 
illustrate the concepts involved. 

Two factors influence the length of time needed for training.  
First, it is important to continue training until almost all 
“normal” behaviors have occurred, because otherwise there is a 
real risk of a high false alarm rate.  Complex applications may 
have many behaviors and require a long training period.  
Second, the choice of N affects the training time, because the 
set of (N+1)-grams is naturally larger than the set of N-grams, 
for any given trace.  In this paper, we will be concerned with 
the second factor, which implies that the value of N should not 
be too large.  On the other hand, a value of N that is too small 
can result in a poor characterization of normal behavior.  
Choosing N = 1, for example, simply characterizes a program 
by the set of kernel operations it calls, which is almost always 
inadequate. 

It is desirable, then, to use the smallest value of N that can 
adequately distinguish between normal and abnormal program 
behavior.  

2.1 The training problem—why the value of 
N varies 
In applying the N-gram characterization to distributed 
applications, we were concerned with characterizing the 
behavior of an application client as it appears to a server from 
which it requests service.  When the observer of a program is 
the operating system kernel, the granularity of kernel calls may 
determine a suitable value for N.  Some experimentation with 
the operating system would then be sufficient to find this value.  
In the case of distributed applications, however, each server 
determines the granularity of the calls it accepts.  The 
responsibility for finding a suitable value for N falls on the 
application developer. 

Training is typically done in one of two ways.  One way is to 
make up a set of representative test cases and exercise the 
program using them.  Another is to collect data during actual 
use of the program.  In either case, it is necessary to decide 
when training is complete—incomplete training will lead to 
false positives.  At the beginning of training, the self database 
grows very rapidly; later the rate of growth decreases.  When 
the rate of growth becomes very small, we say that the self 
database converges.  At this point, it is likely that the self 
database is nearly complete, and training can stop.   

If N is too small, false negatives are likely.  On the other hand, 
increasing the value of N significantly increases the time 
required for training.  Hence, one would like to use the smallest 
value of N that is adequate for avoiding false negatives—but 
since training is based only on normal behavior, that value is 
not known in advance. 

It should be obvious that choosing a value for N poses a 
problem for the application developer.  He would prefer to 
throw the training data into a hopper and obtain either a self 
database or a message telling him that the self database does not 
yet converge. 

2.2 Representing self with multiple-length 
N-grams 
The sliding window N-gram approach works because small 
substrings are good predictors of the next symbol to be 
encountered in a process trace.  In principle, it seems likely that 
the number of symbols needed for predicting the next one 
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varies from one point in a process to another.  Our approach is 
to look for shortest strings that are good predictors of the next 
symbol to occur. Consider, for example, the string 
“ABCABCABCABC.”  We would characterize this very 
repetitive string by the substrings “A,”  “B,” and “C,” because 
each symbol accurately predicts the following symbol.  A rather 
different approach that also uses modern text processing 
techniques is discussed in the Related Work section. 

Figure 1 shows a more realistic example of the strings that 
result from our construction.  The boldface string at the top is a 
short piece taken from Forrest’s synthetic training data for lpr 
[2], in which symbols have replaced the original data values.  
The lines below the boldface string show successive (multiple-
length) substrings that “cover” the trace fragment.  Each 
substring (e.g. CEAB or CD) consumes one more symbol of the 
input than the preceding substring.   

 

G A H C E A B C C C D A B C C 

G A H 

    H C 

    H C E 

      C E A 

      C E A B 

            B C 

                C 

                  C 

                  C D 

                  C D A 

                  C D A B 

Figure 1.  Multiple-length strings covering a test string 

Intuitively, the strings of Figure 1 are selected for their 
predictive power.  The fact that the current string is CEA, for 
example, constrains the (legitimate) possibilities for the 
subsequent symbol.  Note that this fragment is too short for the 
predictive power of the strings to be apparent.  It is presented 
here solely to provide an idea of how the multiple-length strings 
cover a trace. 

3. Construction of a self database with 
multiple-length strings 
In this section, we describe our construction.  The description is 
in three steps: 

(1) We construct a suffix tree for N-grams of the training data, 
for some value of N that is “large enough.”  N will be the 
upper limit on the length of the multiple-length N-grams.  
Note that picking a “large enough” N for variable-length 
N-grams is much easier than picking a good value for 
fixed-length N-grams.  A finite state machine (FSM) for 
the two-finger algorithm  (equivalent to Forrest’s sliding 
window algorithm) can be constructed immediately from 
the suffix tree. 

(2) We can compact the suffix tree to a directed acyclic graph 
(DAG) by merging “equivalent” subtrees.  The result is a 
set of strings of varying lengths that is equivalent to the 
original set of N-grams.  The DAG also gives rise to a 
FSM. 

(3) By introducing a variation on the compaction, we can 
merge two subtrees if they are “almost equivalent.”  This 
enables us to introduce a bias toward short strings by 
removing longer strings that are approximately equivalent 
to shorter ones.  The result is a weakening of the sliding 
window algorithm, for the large value of N chosen.  
Intuitively, choosing a large value of N increases the size 
of the self database by introducing long strings, some of 
which are arbitrary concatenations of shorter ones.  The 
approximation step removes longer strings that are 
approximately equivalent to shorter ones.  

3.1 The Two-Finger Algorithm 
In [6], Forrest defines the self of Unix processes in terms of a 
sliding window (of constant width N) over the sequence of 
system calls.  “Self” is the set of strings of length N that appear 
in training traces.  In this section, we show how to derive a 
FSM implementation of the sliding window algorithm.  

We begin with a suffix tree, a data structure commonly used in 
string searching algorithms (see, for example, [7]).  A suffix 
tree for a set of keywords (in our case, the set of N-grams) is a 
tree each of whose nodes corresponds to a distinct suffix of one 
or more of the keywords.  Figure 2 shows a suffix tree for the 4-
grams of the example trace. 

In general, a suffix tree for a string contains every suffix of the 
string—so the suffix tree for a string of length m has m distinct 
suffixes.  The suffix tree for a set of strings contains every 
suffix of each string.  A suffix tree for a set of N-grams can be 
constructed by first building a suffix tree for the set of training 
strings and then truncating each branch at depth N.3 
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C
B

B
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B
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Figure 2.  A suffix tree for the sample string A B C C A B 

B C C A A B C 

Each node at depth k (k���������	��
		����labeled with a k-gram 
of the training strings.  The leaf nodes at depth N are labeled 
with N-grams (ABCC, ABBC, etc.).  The root node is labeled 
with the empty string.  

                                                                 
3 The suffix tree will in general include branches of depth less 

than N, representing final suffixes of the training strings.  
This distinguishes it from a keyword tree for the N-grams, 
which has the same branching structure but each of whose 
branches contains exactly N edges.   
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Each edge is labeled with a symbol.  For example, an edge 
labeled A goes from node C to node CA.  

Suffix links connect each node to its longest proper suffix.  For 
example, the suffix link of the node labeled with ABCC goes to 
the node labeled with BCC.4  Suffix links are not labeled; the 
suffix link from a node corresponds to all labels that do not 
occur on out-edges of that node.  The root does not have a 
suffix.  Figure 3 depicts the suffix tree of Figure 2 with a few 
suffix edges shown as dashed lines (inserting all of the suffix 
edges would make the graph hard to read).  For example, the 
suffix of ABCC is BCC.  The suffix of BCCA is CCA.  All suffix 
edges for the path BCCA are included.   

The suffix links provide a way to go from an N-gram (a leaf 
node) to the following N-gram—it is merely necessary to 
follow the suffix link from the leaf node and then the edge 
labeled with the last symbol of the following N-gram.  For 
example, from ABCC, one can follow the suffix link to BCC, 
from which an out-edge leads to BCCA.  Suffix links are also 
useful in handling anomalies, as will be seen below. 
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Figure 3.  Suffix tree with some suffix pointers 

Out-edges from the root node include only the symbols that 
appear in the training data.  New symbols can occur during 
detection—for example, in this case, if we encounter a “D.”  
Hence, our detection algorithm needs one more node, which is 
labeled “UNKNOWN_ SYMBOL.”   

The two-finger detection algorithm can be described as follows.  
Imagine that while reading a test string, you enclose a substring 
of letters with your two index fingers.  As you read the string, 
you move your fingers so they always contain the current 
contents of the sliding window.  Suppose you are reading the 
test string ABCCABBCCABABC.  You begin with both fingers 
together at the beginning of the string.  This (initial) state 
corresponds to the root node of the tree, or the empty string.  
Moving your right finger one letter to the right corresponds to 
descending one level (along a labeled edge) in the tree of Figure 

                                                                 
4 When used in string searching algorithms, suffix trees 

typically have fewer nodes and a string of symbols per edge.  
To implement error recovery in the sliding window algorithm, 
we need a node for each k-gram. 

3.  In this case, with successive moves of your right finger, you 
successively visit states A, AB, ABC, and ABCC.  However, we 
require that your fingers be separated by at most N letters.  In 
order to move past the Nth letter, you must move both fingers 
one letter to the right.  The corresponding action in the suffix 
tree is to move along the suffix link from the current node to the 
node representing the suffix of the label of the current node.  
For example, from state ABCC you move your left finger and 
arrive at state BCC.  (Note that the use of suffix trees ensures 
that this state is in the tree.)  You may now move your right 
finger again, which brings you to state BCCA.   

The right-finger moves correspond to edges in the tree, while 
left finger moves correspond to the suffix links.  We can 
imagine augmenting the tree with additional “branches” 
corresponding to the two-finger moves.  It is easy to see how, 
using left-, right-, and two-finger moves, we can traverse any 
string that contains no anomalies.  After reading in an initial N 
symbols from a completely normal trace, the FSM executes an 
alternating series of two-finger moves, each of which ends with 
the fingers enclosing an N-gram.   

An anomaly requires us to use left-finger moves.  The example 
test string given above is identical to the training string, except 
that after the tenth character, an additional B has been inserted, 
so that the string ends with “CCABABC” instead of “CCAABC.”  
From the node labeled CCAB, we follow a suffix link (left-
finger move) to CAB.  Since there is no node CABA, we follow 
the suffix link to AB, but that node also has no out-edge labeled 
A.  We then follow another suffix link to B, and finally a suffix 
link to the root, which does have an out-edge for A.  The three 
extra suffix links correspond to three anomalous N-grams in the 
input string (CABA, ABAB, and BABC).  From the root, edges 
descend to ABC. 

Based on the suffix tree, it is straightforward to define a finite 
state machine that implements Forrest’s sliding window 
algorithm.  First, we recall the definition of a state-output 
automaton, which produces output for each state.  Then we 
define a suffix automaton to be a state-output machine that 
captures the way we use suffix links as “none of the above” 
transitions.  Finally, we will show how the suffix tree gives rise 
to a suffix automaton. 

Definition.  A state-output machine (following [1]) is a 
quintuple (S� � �Y� ����	
	 

(1) S is a finite set of states. 

(2) � ��������	����� �����	� �	�� ���	� ������������	���� � �� ��� ��	�
�	�������
������������������������������
���� k is the set of 
strings of length k. 

(3) ��S �� � �S�������
����������������������	���������� �����
be extended to strings of input symbols in the obvious 
way. 

(4) Y is the set of outputs. 

(5) ��S �Y is an output function from states. 

Notice that the output is determined by the state.  Upon entering 
a state, the FSM emits an output symbol.  In this paper, we are 
concerned only with Y = {0,1}, where 1 signifies an anomaly 
����  � ��	� ���	��	� ��� ��� ��������� � !�� �s) = 0, we call s an 
accepting state. 
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Definition.  A suffix automaton is an 9-tuple 
(S� � �s0,s �

� �Y� ����	
	�S�� � Y������ ��
	���	����	������
���
state-output machine.  A suffix automaton has partial functions 
that define ordinary state transitions for some input symbols 
� s) for each state s�� �"�
���������������������� s, the effect of 
��	������������������	���	��#����������$���������� � 

To define the executio������� �����$������������	��		�� ��s0, 
s �� ������ ��� ��	���	����	�%��
���&��
�������������

	���������
��� ��	� �
����	�� ��� ��	� �����$� �
		�� ���� � �	���	�� ��	� �����$�
transitions.  We will need s0, s �� ���� � ��� 	���
	� ����� ��	�
transition function for the suffix automaton is well defined. 

�������	�������
��������������� s.  For each node s���	�� s�� � �S 
�	���	��
����
������	��
������������
����	�����	�� s���� ���'�(	� ��

s can be extended to strings of input symbols. 

��	� �����$� ��������� ��S �S defines the suffix of each node 
except s0.  We will define execution at s������(	���	��
��������� s 
if possible, and otherwise to take a transition defined by �s).  If 
�s����	��)����#	�������
��
���	��
����������	��
�� � �s)), and 

so on.  In order to ensure that the transition is well defined, we 
must make sure that following suffix transitions does not lead 
���������������	��������*	�
	+��
	��������	
	�	$���������������� � 

S � , from the states S������	�����
�������	
������������� �s) 
= 0 iff s = s0 and that for all s ,� s0�� � �s��� -� �s)-1.  This 
ensures that all members of the sequence s, �s), � �s)), … are 
distinct and that every such sequence terminates (at s0).  We let 
�s) denote the sequence starting at state s. 

The special state s  is needed in order to define transitions at s0 

��� �-� s0 is not empty, since s0�������������$�����	��� s  is empty 
���� �s ) = s0. 

We can now define execution of a suffix automaton by 
providing the transition function for the equivalent state-output 
machine.  For each state s and each input symbol x, 

�s,x��-� s(x) if x �� s  

�s,x��-� � �s),x) if x �� s and s ,�s0,  

�s0,x) = s  if x �� s0.  

That is, if there is a transition from s labeled x, it defines the 
following state.  If not, and if s has a suffix state, the suffix state 
defines the following state.  However, one state, s0, has no 
suffix.  If s0 has no transition labeled x, the following state is s . 

Having defined the general operation of a suffix automaton, we 
now show how to construct a suffix automaton for a given 
suffix tree.5  In such an automaton, S contains one state for each 
node in the suffix tree.  Because of the nature of the sliding 
window algorithm, � �s s�

j ( ) . 

��	� �����$� ���(�� �	���	� �� � ��	� ��������� � ����� 	� �		�� ��
�
ordering suffix chains is the depth of s in the tree.  The state s0 
corresponds to the root node and s  to the 
UNKNOWN_SYMBOL node.   

��	��
����	�������	������$��
		���	����� ������	���#����������
�
nodes with depth less than N.  In the example of Figure 3�� AB = 
{B,C.����� AB(C) = ABC���"�
����	������	�������	�����	��� �

                                                                 
5 In this discussion, we will usually not distinguish between 

nodes of the tree and the corresponding states.  The mapping 
should be obvious. 

with functions corresponding to the two-finger moves.  

Formally, s� = ( )sj
� and ( )s x�  = ( ) ( )s x

j
d for all x in ( )sj

� .  

"�
�	$����	�� ABCC(A) = BCCA. 

The set Y����������������������/ �0.�����	����������������� ����
��������	���	���� �� ) = 1.  For s ,�� �� �s) = 0 iff s corresponds 
to a node of the suffix tree at depth N.  (Note that the automaton 
does not emit any output for the first N-1 symbols.  The output 
can be suppressed by filtering the output of the automaton 
through some counting device.) 

3.2 Compressing the finite state machine 
By the nature of the sliding window algorithm, the suffix tree 
exhibits a good deal of redundancy.  We now remove the 
redundancy by identifying and merging equivalent states.  The 
intuitive notion of equivalence we use here is that if two 
suffixes of an N-gram are equally good at predicting which N-
grams can follow (without causing an anomaly), then we will 
consider them equivalent.  In the case of anomalies, this will 
enable us to move our left finger over several symbols instead 
of just one symbol at a time.  An example of redundancy may 
be seen in Figure 4, where similar portions of the tree of Figure 
2 are shown as dotted lines (note that �AB) = B).   

                                         

A

B C

B
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C

B

A

C

C
C

C
B

A

C C

 
Figure 4.  Redundant portions of (part of) the suffix tree  

We now formalize this notion of similarity between subtrees as 
an equivalence relation between states of a suffix automaton 
�����������	������������$��
		���1	���������� �s) is the sequence 
of suffix states of s.  We define two states to be similar if they 
�
	��	��	
����� �� �����
������� �s) and their normal (branch) 
transitions go to equivalent states.  (For example, in Figure 4, 
AB and B are similar.) 

Definition.  If s1�-� �s2) or s2�-� �s1), states s1 and s2 are similar 
(s 1 ~ s2) iff  

(a) 
1 2s sS = S and 

(b) �x �
1s

S , 
1
( )s xd =

2
( )s x�  or  

1
( )s xd ~

2
( )s x� . 

This is well defined for a suffix automaton derived from a 

suffix tree, because for a node s at depth less than N, ( )
s

xd has 

greater tree depth than s, and the tree depth is bounded by N.  
Note that by construction, every node s at depth N is similar to 

its suffix (because ( )s sj
� � �  and ( )( ) ( )s sx x

j
d d�  for all 

x in s� ).  We let 2��	���	���	��
������#	������
	����3�����	��2����
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an equivalence relation on S, and we can form the quotient set S 
/2���*	��	��4s] denote the equivalence class of s in S/2��� 

The states S /2���
���������$������������� ��s0, s , and Y map to 
S /2� ��� ��	� ��#�ous way, but we must still define the suffix 

function ĵ , the depth function m̂ , and the output function b̂  
on members of S/2���*	�������	������$������	�	+��#��	��	�������
to be the suffix of its smallest member (e.g., we want the suffix 
of [AB] to be the equivalence class of the suffix of [B], since AB 
2� B).  Informally, we consider B to be the representative 
member of S/2�� �"�
�������������	
� ��	��	��	
����� �s)— s, 
� (s), � (� (s)), etc.  Let  be the last member of the sequence 
that is similar to s, i.e., the member that is highest in the tree.  
Then we define ĵ ([s]) to be [� ( )].  Similarly, we can define 

the depth function on S/2���� m̂  ([s]) = [ �  ( )]. 

We define b̂  (the accepting states) slightly differently in order 
to ensure that some states of S/2��
	����	������� �*	��	���	����
equivalence class to be accepting if it is the image of any 
accepting state.  Consider the set of all states s �������
	�������
�

to s, and consider the set of ( )sm � .  b̂ ([s]) = 0 iff N is in the 
set. 

The resulting automaton for the example of Figure 4 is shown 
in Figure 5 (state names are omitted in Figure 5).  All nodes are 
accepting, except the root and nodes labeled [A], [B], and [C].  
Note that states ABBC, BBC, and BC from the original 
automaton all map to [BC].  The suffix state for [BC] is [C], the 
image of the suffix state of BC.  [BC] is an accepting state, 
because ABBC is accepting.  The accepting states are [AA], 
[AAB], [BC], [CC], [CA], [CAB], and [BB]. 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Automaton resulting from compression of Figure 
2 

Note that 2� ��	�� ���� ��

	������ ��� ��	� ����
��� ������� ���
automaton equivalence (as in the Myhill-Nerode theorem [9]) 
that two automata should produce the same output for a given 
input string.  In general, the compressed automaton represents a 
weakening of the original finite state machine, in the sense that 
it will detect monotonically fewer anomalies.  For example, if 
we run the resulting FSM on the test string 
ABCCABBCCABABC (in which a B is inserted between the two 
final As of the training string), we get two anomalies (marked 
with asterisks below) after the last CAB, since A and B are not 
accepting states.  By contrast, the original automaton found 
three anomalies. 

       C C A B A B C 

       C C 

         C A 

         C A B 

              A* 

                B* 

                B C 

The empirical question is whether the compressed automaton is 
still able to detect attacks.  We will address this question in 
Section 4. 

3.3 Automatic construction without N 
Given a value for N, the construction so far enables us to define 
a set of “N-grams” of different lengths and a compressed 
automaton that implements the sliding window algorithm.  It is, 
however, not sufficient for achieving our goal, which is to 
automatically find strings of the “right” length.   

Now suppose that we pick a large value of N—not huge, but 
large enough that we are comfortably assured that it exceeds 
whatever “good” value of N we would like to end up with.  The 
result will be a self database containing more strings than we 
need, some of them quite long.  Suppose further that two 
subtrees are similar, in the sense of Figure 4, except that way 
down in the subtrees there is a difference between them.  If the 
difference is far enough down, then we might wish to treat the 
two subtrees as if they were equivalent.  If we have chosen a 
large enough value for N, then we do not mind small 
discrepancies lower down in the subtrees.  Many longer strings 
are simply artifacts anyway—they may well be concatenations 
of shorter strings that already capture the essence of the training 
data. 

In a suffix automaton based on a suffix tree, let � s
i
 be the 

sequences of length i that can occur without causing a transition 
through a suffix state.  They correspond to tree paths in the 

suffix tree.  � s
1
���� s.  In our example, �CA

1
 is {A,B}, �CA

2
 is 

{AB, BB}, �CA
3

 is {ABC, BBC}, and so on.  For this weaker 

notion of equivalence, we require only that � s
i
 be the same for 

the two subtrees up to � s
k

.  Intuitively, the subtrees match 

down to a depth of k, but they may diverge below that.  We call 
the states corresponding to the roots of the two subtrees k-
similar.  For example, in Figure 2, states CA and A are not 
similar, because they are not 2-similar (node AB has two out-
edges, while node CAB has only one).  However, they are 1-
similar.   

Definition.  Any state is k-similar to itself.  If s1�-� �s2) or s2 = 
�s1), then s1 and s2 are k-similar, s1 ~k s2, iff 

(a) k = 0, or 

(b) � s
i

1
= � s

i

2
, and  

�x �� s1
, 

1
( )s xd  ~k-1 

2
( )s x� . 

The transitive closure of k-similarity is also an equivalence 
relation on S and the k-similar states form a suffix automaton in 

A

A
B

B

C

B

C
C

A
B

C

C

B

A

C

B

A

C



 
7

the same way as the similar states.  We call k the approximation 
parameter.  

Using k-similarity, we can compress the automaton of Figure 2.  
Figure 6 shows the graph that results from the example suffix 
tree by compression using an approximation parameter of 1.  It 
differs from the graph of Figure 5 in that there are no nodes 
corresponding to CA or CAB.  All nodes are accepting, except 
for the root node and [C].  

If we run the resulting automaton on the test string 
ABCCABBCCABABC (in which a B is inserted between the two 
final As of the training string), we get no anomalies, as shown 
in the sequence of states below.  The suffix link from [A] goes 
to the root (empty string) node, and thence to state [B], but in 
this automaton [A] and [B] are accepting.   

       C C A B A B C 

       C C 

           A 

             B 

               A 

                 B 

                 B C 

In general, the weakened automaton that comes from using k-
similarity will find fewer anomalies than either the original 
automaton or the automaton based on similarity, for the same 
value of N.  However, recall that our plan is to pick a large 
value of N (rather than N = 4, as in this example).  The hope is 
that even if the resulting automaton cannot detect all anomalies 
for the large value of N, it will still be able to detect attacks that 
could be detected for some smaller values of N.   

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Result of compression using k=1 

In the next section, we address the empirical question of how 
well the resulting detector is able to detect actual attacks. 

4. Results 
In this section, we compare the effectiveness of this algorithm 
with the sliding window algorithm and briefly examine its 
effect on the size of the self database. 

Characterizing the program behavior with multiple-length 
strings is essentially a weakening of the characterization as a set 
of N-grams (but with a larger N).  Because our algorithm is 
weaker than Forrest’s sliding window algorithm and we assume 
that training continues until the self database converges, our 

algorithm will not introduce any false positives.  That is, it will 
not find “anomalies” that Forrest’s N-gram method does not 
find.  However, we need to show that it is effective in finding 
anomalies—i.e., does not introduce false negatives.   

The algorithm presented here has been programmed and applied 
to three sets of training data: 

• lpr training data and exploit from the University of New 
Mexico [2] 

• inetd training data and exploit from the University of 
New Mexico [3] 

• data from the PersonnelTracker application collected by 
the CORBA Immune System [10]. 

4.1 Synthetic lpr data from the University 
of New Mexico 
Figure 7 shows a graph of the locality frame measure [8] for an 
lpr exploit, as measured against UNM’s “synthetic normal” 
self database for lpr.  The locality frame measure counts the 
number of anomalies in the last L N-grams and is a good 
indicator of anomaly clusters, which characterize attacks.  
Following Forrest, we have used L = 20 in this paper.  For 
example, a locality frame measure of 10 means that half of the 
previous 20 N-grams were anomalous.  The spike at the end of 
the graph corresponds to an lprcp attack (the two minor 
bumps are due to symbols that do not appear in the training data 
and are not important).   
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Figure 7. N-gram anomaly measure for lpr exploit (N = 6) 
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Figure 8. Multiple-length strings (max length = 15) for lpr 

exploit 

Figure 8 shows the same exploit when measured against a 
multiple-length strings self database with a maximum string 
length of 15.  In this and subsequent examples, we use an 
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approximation parameter of 1.  This weakens the detector the 
most and results in a self database with the shortest strings—in 
short, it is more apt to result in false negatives than other values 
of d.  Note that the anomaly value reaches a maximum of 13 
(out of 20) in Figure 7 but only 5 in Figure 8.  Note also that the 
minor bumps do not appear in Figure 8.  In both cases, the data 
are sufficient to distinguish an attack from a non-attack. 

4.2 Inetd data from the University of New 
Mexico 
Figure 9 and Figure 10 show analogous anomaly measure data 
for a denial of service attack against inetd.  The self database 
was generated from training data collected at UNM.  In this 
example, the maximum anomaly value for the N-gram method 
is 20, vs. 10 for multiple-length strings.  Again, the attack is 
clearly visible in both. 

 

Figure 9.  N-gram anomaly measure for inetd exploit (N = 
6) 
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Figure 10.  Multiple-length strings (max length = 15) for 

inetd exploit 

4.3 Attack on a CORBA application 
The CORBA Immune System uses the N-gram method to catch 
rogue clients.  Some applications require client and server 
programs to work closely together; the server may rely on the 
client to follow a certain protocol or maintain certain invariants.  
A rogue client is a malicious program that masquerades as a 
legitimate client of such a server.   

Figure 11 shows the anomaly measure graph of a rogue client, 
using training data and attack data collected by the CORBA 
Immune System for the PersonnelTracker application.  For this 
application, N = 3.  Note that Figure 11 looks very different 
from the graphs of the Unix processes.  In the lpr and inetd 
examples, most of the execution is normal, with an attack 

occurring after a period of normal execution.  In the rogue 
client type of attack, the entire execution is abnormal, since 
none of the normal client code is being executed.  
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Figure 11.  Rogue client, measured using N-gram method (N 

= 3) 

Figure 12 shows the results for the multiple-length string 
method (maximum length = 6), using the same training and 
attack data.  As in the Unix examples, the difference between an 
attack and a random anomaly is clear, although all of the 
anomaly values are smaller.   

Figure 12.  Rogue client, measured using multiple-length 
strings (N = 6) 

An example of a normal trace with a slight anomaly is shown in 
Figure 13 (multiple-length strings, max length = 6). 

Figure 13.  Insignificant anomaly in normal client 

4.4 Self database size 
For the examples we have tested, multiple-length strings allow 
the self database to be much smaller than the corresponding N-
gram database.  For example, using Forrest’s lpr data, there 
are 177 strings and 1062 symbols in the self database, while 
with our method, there are 131 strings and 318 symbols.  For 
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inetd, our method reduces Forrest’s 126 strings and 756 
symbols to 92 strings and 281 symbols.   

Such comparisons are not entirely fair, since one self database 
is a set and the other a finite state machine.  That is, there is 
some hidden information in the state machine—namely, which 
symbol(s) can appear next in normal traces—that supplements 
the information in the strings.  Nevertheless, the primary reason 
for the reduction is the intrinsic redundancy in N-grams, which 
our method wrings out.  The number of transitions in the FSMs 
is reduced along with the number of strings and symbols in the 
self database.  For example, for lpr, the two-finger algorithm 
requires 774 transitions, as opposed to 307 for multiple-length 
strings. 

In short, our results so far suggest that extra processing at the 
time of constructing the self database can result in a 
significantly more efficient detector at run time. 

4.5 Self database size as a function of N 
For our method to be practical, we would like the size of the 
FSM to converge as N grows, indicating that there is a “natural” 
set of covering strings.  It also means that in selecting a 
maximum value for N, there is no penalty for choosing a 
slightly larger value than necessary.  Figure 14 shows that this 
is indeed the case.  As N increases, the number of N-grams 
(first column) grows, while the number of states in the FSM 
(second column) levels off after N = 6.  The number of 
multiple-length strings in the database (the number of accepting 
states in the FSM, shown in the third column) also levels off 
after N = 6. 
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Figure 14.  Growth of synthetic lpr database as function of 

N 

Figure 15 shows the analogous chart for the growth of the self 
database in the rogue client example.   
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Figure 15.  Growth of PersonnelTracker database as 

function of N 

5. Related Work 
Hervé Debar has used traditional string processing techniques 
to find longest repeating patterns in training data [4].  Consider, 
for example, the string “ABCABCABCABC.”  Debar’s method 
would characterize that string using the repeating substring 
“ABC.”  By contrast, we look for very short strings that are 
good predictors of the next character.  The result is a sliding 
window that always advances one character to the right, but 
whose width may vary at each step.  As noted above, we would 
characterize this string by the substrings “A,”  “B,” and “C.” 

Because of his focus on repeating patterns, Debar’s detection 
method is based on matching adjacent substrings.  His 
algorithm, then, hops from one substring instance to the next, 
rather than sliding from one symbol to the next.  At each hop, 
the test string is tested against the various patterns in the self 
database. 

Like ours, Debar’s construction of the self database uses a 
suffix tree, but instead of pruning to a maximum depth of N, he 
prunes branches based on relative frequency in the training 
data.  Thus, strings that occur relatively few times are assumed 
to be rare in practice and are removed from the suffix tree.  His 
method relies on a rareness parameter, as ours does on the 
approximation parameter. 

Debar’s input data for both training and detection consists of 
audit events, rather than the kernel calls used by Forrest.  The 
audit events are further preprocessed to remove consecutive 
occurrences of the same call—hence any two adjacent symbols 
in the processed data are guaranteed to be different.  Given this 
input data and his adjacent string detection method, he has 
found that his variable-length strings are just as good at 
detection as his fixed-length strings.  Because of the differences 
in input data, preprocessing, and detection method (hop vs. 
skip), it is difficult to compare Debar’s results (for either fixed-
length or variable-length strings) with ours or with those 
obtained by the University of New Mexico group.   

6. Future Research 
The results that we have presented here are very preliminary.  
In order to demonstrate its general applicability, our method 
should be applied to many other examples, both to further 
examples of Unix processes and to examples from other 
domains to which the N-gram method has been applied. 

Previous work in Computational Immunology has been 
criticized on the grounds that it relies on a “magic number”—
that there are no compelling reasons for using six as the value 
of N.  Our results suggest that six is indeed a natural value for N 
in sequences of Unix kernel calls, since the number of multiple-
length strings resulting from our method stops growing after 
N=6 (see Figure 14).  It would be interesting to study more 
examples to find out whether they all support the same value, or 
whether the value varies significantly depending on the 
program.  

Finally, in the examples we have studied, an approximation 
parameter of 1 (k = 1) was adequate for detection.  These 
examples were characterized by excellent coverage (that is, the 
training data covered all program behavior).  In larger 
applications, complete coverage may be difficult or too 
expensive to obtain.  Larger approximation parameters give a 
closer approximation to the original sliding window algorithm.  
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It may be possible to compensate for poorer coverage by using 
larger approximation parameters.  To date, we have little 
experience with values greater than one. 

7. Conclusions 
We have presented a way of constructing a self database for a 
program in the form of a finite state machine.  The finite state 
machine implicitly defines a set of multiple-length strings that 
cover the empirical training data.  The primary advantage of 
this method over N-grams is pragmatic: it is not necessary to 
find a suitable value for N.  The method also provides an 
implementation technique that generates efficient detectors.  
The resulting self database is less sensitive to anomalies than 
the N-gram database but it appears to have sufficient sensitivity 
in practice to detect attacks. 
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